# Vydac® Media

## 300Å RP Protein Purification Pioneer

Pioneered by Grace and produced by a unique process based on purified oranosilicate starting materials, Vydac® silicas are well defined, high purity, totally porous separation media that meet the most demanding needs of preparative and process scale users. Proven in over two decades of applications for protein, peptide, and nucleic acid separations, Vydac® 300Å reversed-phase media have excellent selectivity and reproducibility. Bulk Vydac® adsorbents incorporate bonded phase chemistries identical to those in Vydac® brand analytical and prep HPLC columns, thereby assuring economical method development and reliable, dependable scale-up for preparative and process chromatographic applications.



| Vydac® TP 300A Silica Specifications |            |  |  |  |  |  |  |
|--------------------------------------|------------|--|--|--|--|--|--|
| Pore Size:                           | 300Å       |  |  |  |  |  |  |
| Pore Volume:                         | 0.6mL/g    |  |  |  |  |  |  |
| Surface Area:                        | 90m²/g     |  |  |  |  |  |  |
| Particle Shape:                      | Spheroidal |  |  |  |  |  |  |

#### Vydac® 300Å Media

|                             |                            | MS                         |                                 | TP                         |                            |                                 |                                           |            |                 |
|-----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------------|------------|-----------------|
| Bonded Chemistry            | Butylsilane<br>C4<br>214MS | Octylsilane<br>C8<br>208MS | Octadecylsilane<br>C18<br>218MS | Butylsilane<br>C4<br>214TP | Octylsilane<br>C8<br>208TP | Octadecylsilane<br>C18<br>218TP | Octadecylsilane<br>C18 monomeric<br>238TP |            | Silica<br>101TP |
| 10–15µm Particles           |                            |                            |                                 | 214TPB1015                 | 208TPB1015                 | 218TPB1015                      | 238TPB1015                                | 219TPB1015 | 101TPB1015      |
| 15–20µm Particles           | 214MSB1520                 | 208MSB1520                 | 218MSB1520                      | 214TPB1520                 | 208TPB1520                 | 218TPB1520                      | 238TPB1520                                | 219TPB1520 | 101TPB1520      |
| 20–30µm Particles           | 214MSB2030                 | 208MSB2030                 | 218MSB2030                      | 214TPB2030                 | 208TPB2030                 | 218TPB2030                      | 238TPB2030                                | 219TPB2030 | 101TPB2030      |
| Available in 10g increments |                            |                            |                                 |                            |                            |                                 |                                           |            |                 |

#### tech tip

### Vydac® MS vs. Vydac® TP

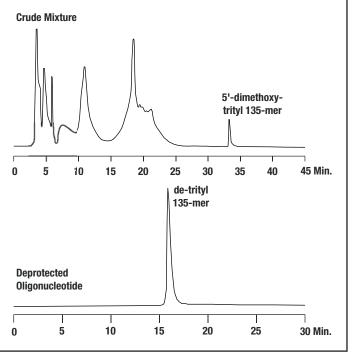
Both phases are based on the same high purity 300Å silica. However, MS undergoes an additional treatment prior to bonding that reduces the residual polar activity of the silica surface. For many applications this results in improved resolution and an increase in recovery.

## Two-Stage Purification of a Synthetic 135-mer

Although generally recommended for oligonucleotides up to 75 bases, Vydac® 214TP columns have been used to purify much longer synthetic oligonucleotides. Here a 135-mer is purified by two stages of chromatography on a 214TP column—the first with the 5'-dimethoxytrityl protecting group still attached, causing strong retention, and the second after removal of the trityl group.

Column: Vydac<sup>®</sup> 214TP1010 C4, 10µm,10 x 250mm

Flow Rate: 5mL/min


Mobile Phase: A: 0.1 M Triethylammonium Acetate, pH 7.0

B: Acetonitrile

Gradient: Crude: 0 to 60% B from 5 to 40min

Deprotected: 0 to 20% B from 5 to 25min

Detector: UV at 260nm



Data courtesy of Joseph Kosmoski and Dr. Michael Smerdon, Dept. of Biochemistry and Biophysics, Washington State University, Pullman, WA, USA